Impacts of grazing management strategies on forage canopy structure in multi-species pastures during the wet-dry transition period

Authors

  • L. F. Penteado Instituto Agronômico, Campinas, SP, Brazil
  • A. C. L. Batista Instituto de Zootecnia, Nova Odessa, SP, Brazil
  • A. F. B. Ongaro Universidade Federal dos Vales do Jequitinhonha e Mucuri, MG, Brazil
  • M. M. Vieira Instituto de Zootecnia, Nova Odessa, SP, Brazil
  • F. F. Simili Instituto de Zootecnia, Nova Odessa, SP, Brazil
  • R. L. D. Costa Instituto de Zootecnia, Nova Odessa, SP, Brazil
  • C. M. P. Barbosa Instituto de Zootecnia, Nova Odessa, SP, Brazil
  • S. D. Simão Universidade Federal de Lavras, Lavras, MG, Brazil
  • F. M. A. Gimenes Instituto de Zootecnia, Nova Odessa, SP, Brazil

DOI:

https://doi.org/10.17523/bia.2024.v81.e1935

Keywords:

Canopy height, continuous stocking, forage legumes, intercropped pasture, Panicum maximum cv. Aruana

Abstract

The condition of pastures during the wet-dry transition period reduces livestock production since there is an increase in dead material and a reduction in green tissues. This study evaluated the influence of grazing management strategies on the structure of the forage canopy during the wet-dry transition period. The pastures were composed of Aruana guineagrass (Megathyrsus maximum Syn. Panicum maximum cv. Aruana) and three legumes: Macrotyloma (Macrotyloma axillare), Calopo (Calopogoinum mucunoides), and Stylo (Stylosanthes macrocephala + Stylosanthes capitata). The treatments corresponded to four forage canopy heights (15, 30, 45, and 60 cm), and the grazing management strategies involved steady or variable stocking rates with sheep. The experiment was conducted in a randomized complete block design with four replications totaling 16 experimental units (paddocks). The masses of grass leaf blades and stems were higher at heights of 45 and 60 cm (P = 0.002), while the proportion of dead material was smaller in these than in the short pastures (15 and 30 cm) (P = 0.0497). There was an increase in the proportion of dead material over the dry-water transition period. The presence of grass and legume leaves was higher in the upper stratum of tall pastures (45 and 60 cm) and the proportion of legumes did not differ between grazing management strategies (P > 0.05). These strategies were represented by canopy heights of 45 to 60 cm and showed more leaf mass, less dead material, and better pasture structure, so these parameters can be used during the wet-dry transition period. 

Downloads

Download data is not yet available.

References

AGUIRRE, P. F.; OLIVO C.J.; SIMONETTI G.D.; NUNES J.S.; SILVA J.O.; SANTOS M. DA SILVA; CORREA M. DA ROSA; BRATZ V.F.; ANJOS A.N.A. Productivity of Coastcross-1 pastures in intercropping with different winter cycle legumes. Ciência Rural, v. 44, n. 12, p. 2265-2272, 2014. https://doi.org/10.1590/0103-8478cr20140156

ALVIAREZ, L.A.D.; HOMEM, B.G.; DO COUTO, P.H.; DUBUEX, J.C.B.; BERNARDES, T.F.; CASAGRANDE, D.R.; LARA, M.A. Management of Marandu palisadegrass and calopogonium pastures based on light interception. Grass and Forage Science, v. 75, n. 4, p. 447-461, 2020. https://doi.org/10.1111/gfs.12501

BARRETA, D. A.; NOTTAR, L. A.; SEGAT, J. C. Production, nutritional value and estimated productivity of milk in cool season intercropped pastures. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 72, p. 599-606, 2020. https://doi.org/10.1590/1678-4162-11436

BARTHRAM, G. T. Experimental Techniques: The HFRO Sward stick. The Hill Farming Research Organization, p. 29-30, 1985.

BRAGA, G.J.; RAMOS, A.K.B.; CARVALHO, M.A.; FONSECA, C.E.L.; FERNANDES, F.D.; FERNANDES, C.D. Live weight gain of beef cattle on Brachiaria brizantha pastures and mixtures with Stylosanthes guianensis in the Brazilian cerrado. Grass and Forage Science, v. 75, p.206-2015, 2020. https://doi.org/10.1111/gfs.12473

COLOZZA, M. T.; WERNER J. C.; GERDES L.; DE FREITAS J. C. T.; ASSEF L. C.; SCHAMMASS E. A. Estabelecimento de 25 acessos de leguminosas forrageiras consorciadas com capim-aruana. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 39°, Recife. Anais ... Pernambuco, 2002. p.4

DEPABLOS, L.; HOMEM, B.G.C; FERREIRA, I.M.; BERNARDES, T.F.; BODDEY, R.M.; LARA, M.A.S.; CASAGRANDE, D.R. Nitrogen cycle in tropical grass and legume pastures managed under canopy light interception. Nutrient cycle Agroecosystem, v.121, p. 51-67, 2021. https://doi.org/10.1007/s10705-021-10160-7

GERDES, L.; BARBOSA, C.M.P.; GIACOMINI, A.A.; MATTOS, W.T.; GIMENES, F.M.A.; BATISTA, K.; UZAN, B.Z. Introduction of forage legumes in aruana grass pasture. Boletim de Indústria Animal, v. 77, 2020. https://doi.org/10.17523/bia.2020.v77.e1472

GLIENKE, C.L.; ROCHA, M.G.; PÕTTER, L.; ROSO, D.; MONTAGNER, D.B.; OLIVEIRA NETO, R.A. Canopy structure, ingestive behavior and movement patterns of beef heifers on warm-season pastures. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.68, p. 457-465, 2016. https://doi.org/10.1590/1678-4162-8230

HODGSON, J. Pasture management: from science to practice. Longman Scientific & Technical, p. 203, 1990.

IRIGOYEN, L. R.; POLI, C. H. E. C.; CORRÊA, G. F.; TONTINI, J. F.; LÓPEZ, I. F; DA SILVA, J. A. Herbage intake and performance of grazing lambs in tropical erect grass pastures maintained at different heights. African Journal of Range & Forage Science, p. 1-10, 2023. https://doi.org/10.2989/10220119.2023.2221701

LACA, E. A.; LEMAIRE, G. Measuring Sward Structure. In: T MANNETJE, L.; JONES, R.M. (Ed.). Field and laboratory methods for grassland animal production research. Wallingford CABI International, 2000. https://doi.org/10.1079/9780851993515.0103

MATTOS, R. F.; MATUO, C. M.; HERLING, V. R.; TECH, A. R. B.; PEREIRA, L. E. T. Canopy leaf area and leaf mass in the upper stratum of Urocloa hybrid "Mavuno" grass subjected to nitrogen fertilization. Grass and Forage Science, v.78, p. 359-375, 2023. https://doi.org/10.1111/gfs.12614

MOTT, G. O.; LUCAS, H. L. The Design, conduct and interpretation of grazing trials on cultivated and improved pastures (Design, conduct and interpretation of grazing trials on cultivated and improved pastures). International Grassland Congress, p. 1380-1385, 1952.

MUELLER, K. E.; TILMAN, D.; FORNARA, D. A.; HOBBIE, S. E. Root depth distribution and the diversity - productivity relationship in a long-term grassland experiment. Ecological Society of America, v. 94, p. 787-793, 2016. https://doi.org/10.1890/12-1399.1

NAEEM, S.; THOMPSON, L. J.; LAWLER, S. P.; LAWTON, J. H.; WOODFIN, R. M. Declining biodiversity can alter the performance of ecosystems. Nature, v.368, p. 734- 737, 1994. https://doi.org/10.1038/368734a0

NETO, J. V. E.; DIFANTE, G. S.; MEDEIROS, H. R.; AGUIAR, E. M.; FERNANDES, L. S.; TRINDADE, T. F. M.; BEZERRA, M. G.; OLIVEIRA, H. C. B.; GALVÃO, R. C. P.; Cultivated pastures affect nutrient consumption and feeding behavior of sheep. Tropical Animal Science Journal, v. 43, 2020. https://doi.org/10.5398/tasj.2020.43.2.117

NOTARIS, C., OLESEN, J.E., SØRENSEN, P.; RASMUSSEN, J. Input and mineralization of carbon and nitrogen in soil from legume-based cover crops. Nutrient Cycling in Agroecosystems, v. 116, p. 1-18, 2020. https://doi.org/10.1007/s10705-019-10026-z

PEMBLETON, K. G.; TOZER, K. N.; EDWARDS, G. R.; JACOBS, J. L.; TURNER, L. R. Simple versus diverse pastures: Opportunities and challenges in dairy production systems. Animal Production Science, v. 55, p. 893-901, 2015. https://doi.org/10.1071/AN14816

PEREIRA, L. E. T.; NISHIDA, N. T.; CARVALHO, L.R.; HERLING, V. R. Recommendations for correction and fertilization of tropical pastures. Universidade de São Paulo. Faculdade de Zootecnia e Engenharia de Alimentos, 2018. p.1-59. https://doi.org/10.11606/9788566404227

SANDERSON, M.A.; STOUT, R.; BRINK, G. Productivity, botanical composition and nutritional value of commercial pasture mixtures. Crop Economics, Production & Management, v.108, p. 93-100, 2016. https://doi.org/10.2134/agronj15.0259

SANTOS, C. A.; MONTEIRO, R. C.; HOMEM, B. G. C.; SALGADO, L. S.; CASAGRANDE, D. R.; PEREIRA, J. M.; REZENDE, C. D.; ALVES, B. J. R.; BODDEY, R. M. Productivity of beef cattle on Brachiaria brizantha cv. Marandu with and without application of nitrogen fertilizer or pastures intercropped with the legume Desmodium ovalifolium. Grass and Forage Science, v. 78, p. 147-160, 2023. https://doi-org.ez26.periodicos.capes.gov.br/10.1111/gfs.12581

SAS INSTITUTE Inc. SAS/STAT. Guia do utilizador, versão 9.1. Cary: SAS Institute, 2005.

SCHMITZ, G. R.; PARIS, W.; KUSS, F.; NORNBERG, L.; COSTA, O. A. D. C.; DE MENEZES, L. F. G. Inclusion of legumes or nitrogen fertilization in arowana grass sown with temperate grasses: Performance, carcass characteristics and fatty acid profile of meat from beef steers. Revista Brasileira de Zootecnia, v.52, 2023. https://doi.org/10.37496/rbz5220210051

SILVA, J. G.; REIS, L. A.; OLIVEIRA, D. H. A. M.; SILVA, S. P.; SILVA, N. A. M.; MACEDO, G. L.; SANTOS, M. E. R. Nutritional and metabolic parameters in deferred pasture with different strategy changes during the dry season. Ciência e Tecnologia Animal e Inspeção de Produtos de Origem Animal, v.74, 2022. https://doi.org/10.1590/1678-4162-12577

SILVEIRA, M.C.T.; J JÚNIOR, D.N.; RODRIGUES, C.S.; PENA, K.S.; SOUZA JÚNIOR, S.J.; BARBERO, L.M.; LIMÃO, V.A.; EUCLIDES, V.A.P.; DA SILVA, S.C. Structure of mulato grass (Brachiaria hybrid ssp.) forage lawn subjected to rotational stocking strategies. Jornal of Crop Science, v.10, p.864-873, 2016. https://doi.org/ 10.21475/ajcs.2016.10.06.p7568

SPAIN, J. M.; PEREIRA, J. M. Sistemas de manejo flexible para evaluar germoplasma bajo pastoreo: Una propuesta. Colômbia: CIAT Lascano, 1985. 85- 97 p.

SPEHN, E. M.; SCHERER-LORENZEN, M.; SCHMID, B.; HECTOR, A.; CALDEIRA, M. C.; DIMITRAKOPOULOS, P. G.; FINN, J. A.; JUMPPONEN, A.; O'DONNOVAN, G.; PEREIRA, J. S.; SCHULZE, E. D.; TROUMBIS, A. Y.; KORNER, C. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos, v. 2, p. 205-218, 2002. https://doi.org/10.1034/j.1600-0706.2002.980203.x

TAMELE, O.H.; LOPES, O.; BERNARDES, T.F.; LARA, M.A.S.; CASAGRANDE, D.R. Optimal management of signal grass defoliation for the establishment of balanced pastures. Grass and Forage Science, v.73, p. 522-531, 2018. https://doi.org/10.1111/gfs.12332

TERRA, S.; GIMENES, F.M.A.; GIACOMINI, A.A.; GERDES, L.; MANÇO, M.X.; MATTOS, W.T.; BATISTA, K. Seasonal change in turf height of Marandu palisadegrass (Brachiaria brizantha) pastures managed by continuous grazing interferes with forage production. Crop and Pasture Science, 2020. https://doi.org/10.1071/CP19156

TESK, C.R.M.; PEDREIRA, B.C.; PEREIRA, D.H.; PINA, D.S.; RAMOS, T.A.; MOMBACH, M.A. Impact of grazing management on forage qualitative characteristics: a review. Arquivos Científicos Eletrônicos, v.11, p.188-197,2018. https://doi.org/10.36560/1152018667

TONTINI, J.F.; POLI, C.H.E.C.; HAMPEL, V.S.; FARIAS, M.S.; FAJARDO, N.M.; DA SILVA, J.A.; FARINATTI, L.H.E.; MUIR, J.P. Influence of structural and chemical characteristics of standing tropical pastures on lamb grazing time. PLOS One, 2021. https://doi.org/10.1371/journal.pone.0242642

WARREN WILSON, J. Quadrats de pontos inclinados. New Phytologist, v. 59, n. 1, p. 1-7, 1960.

XU, P. D.; MA, S. H.; RAO, X. F.; LIAO, S. P.; ZHU, J.; YANG, C. L. Effects of land use on the mineralization of organic matter in Ultisol. Agronomia, v.12, 2022. https://doi.org/10.3390/agronomy12122915

Downloads

Published

2024-04-17

Issue

Section

FORAGE CROPS AND PASTURES

How to Cite

Impacts of grazing management strategies on forage canopy structure in multi-species pastures during the wet-dry transition period. (2024). Bulletin of Animal Husbandry, 81, 1-18. https://doi.org/10.17523/bia.2024.v81.e1935

Most read articles by the same author(s)